提供高质量的essay代写,Paper代写,留学作业代写-天才代写

首頁 > > 詳細

代做FIT3152-Assignment 1調試R、R語言代做留學生

FIT3152 Data analytics: Assignment 1
This assignment is worth 20% of your final marks in FIT3152.

Activity, language use and social interactions in an on-line community.

Analyse the metadata and linguistic summary from a real on-line forum and submit a report of your
findings. Do the following:

a. Analyse activity and language on the forum over time. Some starting points:
• Describe your data: How active are participants, and are there periods where this increases
or decreases? Is there a trend over time?
• Looking at the linguistic variables, do these change over time? Is there a relationship
between them?

b. Analyse the language used by groups. Some starting points:
• Threads indicate groups of participants communicating on the same topic. Describe the
threads present in your data.
• By analysing the linguistic variables for all or some of the threads, is it possible to see a
difference in the language used by these different groups?
• Does the language used within threads change over time?

c. Challenge: Social networks online. We can think of participants communicating on the same
thread at the same time (for example during the same month) as forming a social network.
When these participants also communicate on other threads, they extend their social
network.
• Can you define, graph and describe the social network that exists at a particular point in
time, for example over one month? How does this change in the following months? Note:
you only need to analyse a short time period overall. We will cover social network analysis
in Lecture 5.

Data

The data is contained in the file webforum.csv and consists of the metadata and linguistic analysis
of posts over the years 2002 to 2011. You will each work with 20,000 posts, randomly selected
from the original file. The linguistic analysis was conducted using Linguistic Inquiry and Word
Count (LIWC), which assesses the prevalence of certain thoughts, feelings and motivations by
calculating the proportion of key words used in communication. See http://liwc.wpengine.com/ for
more information, including the language manual http://liwc.wpengine.com/wp-
content/uploads/2015/11/LIWC2015_LanguageManual.pdf

Create your individual data as follows:

rm(list = ls())
set.seed(XXXXXXXX) # XXXXXXXX = your student ID
webforum <- read.csv("webforum.csv")
webforum <- webforum [sample(nrow(webforum), 20000), ] # 20000 rows

Data fields are (see the language manual for more detail and examples):

Column Brief Descriptor
ThreadID Unique ID for each thread (a group of posts on a theme)
AuthorID Unique ID for each author (-1 is anonymous)
Date Date
Time Time
WC Word count of the text of the post
Analytic LIWC Summary (analytical thinking)
Clout LIWC Summary (power, force, impact)
Authentic LIWC Summary (using an authentic tone of voice)
Tone LIWC Summary (emotional tone)
ppron LIWC (all personal pronouns)
i LIWC ("I, me, mine" words) First person singular
we LIWC ("We, us, our" words) First person plural
you LIWC ("You" words) Second person
shehe LIWC ("She, he, her, him" words) Third person singular
they LIWC ("They" words) Third person plural
number Quantities and ranks
affect LIWC (expressing sentiment)
posemo LIWC (Positive emotions)
negemo LIWC (Negative emotions)
anx Words indicating anxiety
anger Words indicating anger
social Words referring to social processes
family Words referring to family
friend Words referring to friends/friendship
leisure Words referring to leisure
money Words referring to money
relig Words referring to religion
swear Swear words
QMark Question Mark (Punctuation)

Submission. Due 8th May 2020. Suggested length: 6–8 A4 pages + appendix.
Submit the results of your analysis, answering the research questions and report anything else you
discover of relevance. If you choose to analyse only a subset of your data, you should explain why.

You are expected to include at least one multivariate graphic summarising key results. You may
also include simpler graphs and tables. Report any assumptions you’ve made in modelling, and
include your R code as an appendix. Submit your report as a single PDF with the file name
FirstnameSecondnameID.pdf on Moodle.

Software
It is expected that you will use R for your data analysis and graphics and tables. You are free to use
any R packages you need but please document these in your report and include in your R code.

Assessment criteria will include:
The quality of your analysis and description of your analytical process; Graphics and tables
supporting your analysis; The quality of graphics used in the report. Justification of your findings
and the degree of proof you can offer (for example statistical tests); Readability and quality of your
written report; Insights gained from the data; Novelty of your approach.

Factors you should consider (starting points, not a complete list):
Techniques: summary/descriptive statistics, identification of important variables, networks, etc.
Major grouping variables: author, thread, date and/or time., or a combination of these.
Time window (days, weeks, months, years…); Subsets of the data to be analysed.
Graphics to communicate your analysis and insights (histograms, scatterplots, heatmaps, time series
提供高质量的essay代写,Paper代写,留学作业代写-天才代写 are some basic starting points, but see https://datavizproject.com/ for inspiration.

聯系我們
  • QQ:1067665373
  • 郵箱:1067665373@qq.com
  • 工作時間:8:00-23:00
  • 微信:Essay_Cheery
熱點文章
程序代寫更多圖片

聯系我們 - QQ: 1067665373 微信:Essay_Cheery
? 2021 uk-essays.net
程序代寫網!

在線客服

售前咨詢
售后咨詢
微信號
Essay_Cheery
微信
全优代写 - 北美Essay代写,Report代写,留学生论文代写作业代写 北美顶级代写|加拿大美国论文作业代写服务-最靠谱价格低-CoursePass 论文代写等留学生作业代做服务,北美网课代修领导者AssignmentBack 北美最专业的线上写作专家:网课代修,网课代做,CS代写,程序代写 代码代写,CS编程代写,java代写北美最好的一站式学术代写服务机构 美国essay代写,作业代写,✔美国网课代上-最靠谱最低价 美国代写服务,作业代写,CS编程代写,java代写,python代写,c++/c代写 代写essay,作业代写,金融代写,business代写-留学生代写平台 北美代写,美国作业代写,网课代修,Assignment代写-100%原创 北美作业代写,【essay代写】,作业【assignment代写】,网课代上代考