提供高质量的essay代写,Paper代写,留学作业代写-天才代写

首頁 > > 詳細

代做INFS7450 Social Media Analytics


INFS7450 Social Media Analytics
Project 1 – Fast Computation of User Centrality Measures
Semester 1, 2020

Marks: 15 marks (15%)
Submission Due: 23 Apr 20 23:59 (Brisbane Time)
Deliverables: See deliverables part
How to submit: Electronic submission via Blackboard

Goal: The purpose of this project is to help students gain practical experiences and understand
the concepts of various centrality measurements for social networks.

Dataset: In this project, you will be working with the public available Facebook social network
data. The Facebook data has been anonymized by replacing the Facebook-internal ids for each
user with a new value. The data contains 4039 nodes, 88234 edges in total. Each line of the
data represents an undirected link starting from one node to another.

The dataset is available from UQ blackboard. See /Assessment/INFS7450 Project One.

Tasks:
1. Calculate the Betweenness Centrality for nodes in the Facebook dataset. (8 marks)
Overview: write code to load the Facebook social network data and construct an
undirected and unweighted graph. Based on the constructed graph, you are required to
write a program to calculate the betweenness centralities for the graph vertices.
Input: The provided Facebook social network data.
Output: The top-10 nodes with the highest betweenness centralities.
Requirements: You may use third-party libraries, such as NetworkX to read, load and
manipulate the Facebook network dataset. However, you must write your own code to
implement the function of node centrality calculation rather than using the third-part or
built-in functions. (You can use any functions in NetworkX other than the functions for
centrality calculation.)

2. Calculate PageRank Centrality for nodes in the Facebook dataset. (7 marks)
Overview: write code to load the Facebook social network data and construct an
undirected and unweighted graph. Based on the constructed graph, you are required to
write a program to calculate the PageRank (with = 0.85, = 0.15) centralities for
the graph vertices.
Input: The provided Facebook social network data.
Output: The top-10 nodes with the highest PageRank centralities.
Requirements: You may use third-party libraries, such as NetworkX to read, load and
manipulate the Facebook network dataset. However, you must write your own code to
implement the function of node centrality calculation rather than using the third-part or
built-in functions. (You can use any functions in NetworkX other than the functions for
centrality calculation.)





Programming Languages:
Python and NetworkX are recommended. However, you have your own choices of
preferred programming languages including, but not limited to, Python, MATLAB,
Java, C, C++, etc.

Deliverables:
Your submission must include the following:
1. A report (.pdf). See the given appendix for an example template.
2. A source code file.
3. A results text file. The file must contain two lines of results. The first line is the top-
10 nodes based on the calculated betweenness centralities. The second line is the
top-10 nodes based on the calculated PageRank centralities. (each item in each line
should be separated by a space.) See the following picture as an example.


Figure 1. the example format of the results

4. Name all the submitted files by using your student ID. For example, 41234567.py
for the source code, 41234567.txt for your submitted results, and 41234567.pdf for
your report.
5. Submit one archive file with your student number as the file name (e.g.
12345678.zip) with all the files and folders mentioned above.

Marking criteria (Total marks: 15):

• Task 1: 8 marks = 3 marks (code) + 3 marks (results) + 2 marks (report)
• Task 2: 7 marks = 2 marks (code) + 3 marks (results) + 2 marks (report)
• Your results should be reproducible and your codes should be readable. If your
codes cannot be executed or generate the results as reported, the corresponding
marks for the code and results will be deducted.
• We will evaluate your submitted results via calculating the Jaccard Similarity
between the submitted results and the ground truth. That means your mark for each
task will be calculated by:

提供高质量的essay代写,Paper代写,留学作业代写-天才代写 Result Mark = Jaccard Similarity (Submitted Results, Ground Truth) * 3

聯系我們
  • QQ:1067665373
  • 郵箱:1067665373@qq.com
  • 工作時間:8:00-23:00
  • 微信:Badgeniuscs
熱點文章
程序代寫更多圖片

聯系我們 - QQ: 1067665373 微信:Badgeniuscs
? 2021 uk-essays.net
程序代寫網!

在線客服

售前咨詢
售后咨詢
微信號
Essay_Cheery
微信
全优代写 - 北美Essay代写,Report代写,留学生论文代写作业代写 北美顶级代写|加拿大美国论文作业代写服务-最靠谱价格低-CoursePass 论文代写等留学生作业代做服务,北美网课代修领导者AssignmentBack 北美最专业的线上写作专家:网课代修,网课代做,CS代写,程序代写 代码代写,CS编程代写,java代写北美最好的一站式学术代写服务机构 美国essay代写,作业代写,✔美国网课代上-最靠谱最低价 美国代写服务,作业代写,CS编程代写,java代写,python代写,c++/c代写 代写essay,作业代写,金融代写,business代写-留学生代写平台 北美代写,美国作业代写,网课代修,Assignment代写-100%原创 北美作业代写,【essay代写】,作业【assignment代写】,网课代上代考